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Ashkenazi 

 in Europe 

 
12th Cen ~10-20K 

1650  ~  425,000 

1880 ~ 6,550,000 

1939~12,000,000 

 

Founder effect: 
~ 800 X 
expansion 

From: A historical atlas of the Jewish people, ed. Eli Barnavi  



PARK8=Dardarin=LRRK2-Leucine rich kinase 2 

~14% 
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GBA Gene and Glucocerebrosidase A 

GBA gene 



18% 
2% 

12% 

2% 

2% 

64% 

GBA carriers

GBA- CH or
homozygotes
LRRK2 carriers

GBA+LRRK2

Others

IPD

36% 

CH, compound heterozygote  
Unpublished data,  

Founder Mutations in Parkinson’s Disease Patients  

of Ashkenazi Origin (1200) 



How Many at Risk? 
Carriers’ rate among Ashkenazi in Israel: 
LRRK2 G2019S ~ 2% 

GBA          ~ 7.8% 

~ 2.8 X 106 X 9.8% = 275,000 at Risk 

How many will have PD ?  

Depends on: Genetic Background, Partial 
penetrance, Environment, Epigenetics, 
Immune system, involvement of additional 
genes, other…. 
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Age Specific Penetrance of LRRK2 G2019S 
Mutation in MJFF Ashkenazi Jewish Consortium 
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GBA: Genotype-Phenotype Correlation 

    with Type of mutation: 

1000 PD 
patients 

“Mild” mutations: 
N370S 

R496H 

“Severe” mutations: 
84GG 

L444P 

IVS2+1  

V394L  

RecTL  
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Name (year) Populatio

n 

Mutations tested 
PD patients Controls Inclusion 

Total GBA mutation 

carriers (%) 

Total GBA mutation 

carriers (%) 

  

Aharon-Peretz (2004)21 Ashkenazi-Jewish N370S, L444P, 84GG, IVS2+1, V394L, R496H 99 31 (31.3%) 1,543 95 (6.2%) R 

Sato (2005)39 Caucasian N370S, K178T, 84GG, R329C, RecNciI, IVS2+1, L444P 88 5 (5.7%) 122 1 (0.8%) R+A 

Eblan (2006)17 Venezuelan Whole-gene sequencing 33 4 (12.1%) 31 1 (3.2%) R+A 

Toft (2006)40 Norwegian N370S, L444P 311 7 (2.3%) 474 8 (1.7%) R+A 

Ziegler (2007)6 Chinese Whole-gene sequencing 92 4 (4.3%) 92 1 (1.1%) R+A 

Tan (2007)4 Chinese N370S, L444P 331 8 (2.4%) 347 0 (0%) R+A 

Wu (2007)5 Taiwanese L444P, RecNciI, R120W 518 16 (3.1%) 339 4 (1.2%) R+A 

Spitz (2007)20 Brazilian N370S, L444P, G377S 65 2 (3.1%) 267 0 (0%) R+A 

Clark (2007)14 Jewish Whole-gene sequencing 178 30 (16.9%) 85 6 (7.1%) R 

  Non-Jewish Whole-gene sequencing 100 8 (8.0%) 94 2 (2.1%) R 

De-Marco (2008)41 Italian N370S, L444P 395 11 (2.8%) 483 1 (0.2%) R 

Mata (2008)15 North-American N370S, L444P 721 21 (2.9%) 554 2 (0.4%) R+A 

Bras (2009)7 Portugal Whole-gene sequencing 230 14 (6.1%) 430 3 (0.7%) R 

Neumann (2009)11 British Whole-gene sequencing 790 33 (4.2%) 257 3 (1.2%) R+A 

Kalinderi (2009)9 Greek Whole-gene sequencing 172 11 (6.4%) 132 4 (3.0%) R 

Mitsui (2009)3 Japanese Whole-gene sequencing 534 50 (9.4%) 544 2 (0.4%) R 

Mao (2010)42 Chinese L444P 616 20 (3.2%) 411 1 (0.2%) R 

Sun (2010)43 Chinese L444P 402 11 (2.7%) 413 0 (0%) R+A 

Lesage (2011)13 North-African Whole-gene sequencing 194 9 (4.6%) 177 1 (0.5%) R+A 

Lesage (2011)26 European Whole-gene sequencing 1,130 76 (6.7%) 391 4 (1.0%) R 

Huang (2011) 44 Taiwanese L444P, D409H, R120W, 

L174P, Q497R 

967 36 (3.7%) 780 2 (0.3%) R 

Noreau (2011)16 French-Canadian Whole-gene sequencing 212 22 (10.4%) 189 11 (5.8%) R 

Moraitou (2012)10 Greek N370S, D409H, L444P, IVS10-1, H255Q, R120W, Y108C, IVS6-2 205 21 (10.2%) 206 7 (3.4%) R+A 

Seto-Salvia (2011)12 Spanish Whole-gene sequencing 225 22 (9.8%) 186 1 (0.5%) R+A 

Emelyanov (2012)8 Russian N370S, L444P 330 9 (2.7%) 240 1 (0.4%) R 

Guimarães Bde (2012)19 Brazilian N370S, L444P 347 13 (3.7%) 341 0 (0%) R 

Kumar (2012)33 Serbian Sequence of exons 8-11 360 21 (5.8) 348 5 (1.4%) R 

Choi (2012)2 Korean Whole-gene sequencing 277 9 (3.2%) 291 0 (0%) R+A 

Wang (2012)45 Chinese L444P, N370S, R120W 208 7 (3.4%) 298 1 (0.3%) R 

Zhang (2012)46 Chinese L444P, N370S, R120W 195 6 (3.1%) 443 0 (0%) R+A 

Gonzalez-Del Rincon Mde 

(2013)18 

Mexican L444P, N370S 128 7 (5.5%) 252 0 (0%) R 

Current study Ashkenazi-Jewish N370S, R496H, 84GG, IVS2+1, V394L, D409H, L444P, RecTL 1,000 192 (19.2%) 3,805 242 (6.4%) R+A 

31 populations; 11,453 Parkinson patients; 14,565 Controls 



Forest plots of:  
31 studies  
Total of:   

11,453 cases  
14,565 controls 

“Mild” mutations 

“Severe” mutations 

OR- 3.01 
(2.50-3.63, p<1x10-20) 

OR- 14.59 
(10.00-21.31, p<1x10-20) 



 
Modifier genes for Risk or Severity 

by Stratification 
 
 

MTX1 
BIN1 

MAPT (TAU) 
SEPT14 
PARK16 

 
Red – increased risk or severity 
Blue – decreased risk or severity 
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Later AAO; No homozygous AA 
BIN1 - Bridging Integrator 1 is involved in synaptic vesicle endocytosis, interacts with transport 

 & synaptic proteins like dynamin, clathrin 
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rs393152, NS rs2435207, NS rs2435207, p=0.025 



A 

SEPT14 

Protective Haplotype 

in Putative promoter 

Populati

o 

Haplotype Haplotype 

frequency 

OR 95% CI p value 

Patients Control   

Entire 

cohort 

    N=1440 N=1480       

A TAA 0.994 0.977 1.00 
0.95-
1.05 0.957 

B GGG 0.005 0.018 0.27 
0.12-
0.63 0.002 

C GAG 0.000 0.003 --- 
--- 

--- 

D TGG 0.001 0.002 0.34 
0.04-
3.29 0.353 



Protection - Ch 1 PARK16 Locus 
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• Five RAB7L1 haplotypes for increased- and decreased risk 

• Hap-D lowers the risk for PD by 10 times 

Parkinson’s Protection  



2018  92 genes 

2017  72 genes 

2014  24 genes 

 

• Nalls et al. Nature Genetics 2014;46:989-93 

• Chang D, Nalls et al. Nature Genetics 2017;49:1511-6  

• Nalls et al. bioRxiv.2018; http://dx.doi.org/10.1101/388165do  

GWAS 



• Lysosome-mediated autophagy 
• Mitochondrial and stress response 
• Synaptic transmission (exo- endo- cytosis), endosomal receptor 

sorting & recycling 
• Microtubule dynamics 
• Ubiquitine-proteasome                                 Trinh Nat Rev Neurol 2013 

Cellular Pathways 



The ‘‘omnigenic’’ model 
The principals: 
• For any given disease phenotype, only a limited number of genes have 

direct effects on disease risk (core genes).  
• Due to the property of networks, most expressed genes are close (only a 

few steps) to the nearest core gene and thus have effects on disease. 
• Since core genes constitute only a tiny fraction of all genes, most 

heritability comes from genes with indirect effects. 
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